CRASH COURSE
LECTURE - 03

TOPICS : Error Analysis

1. The density of a cube is measured by measuring its mass and the length of its side. If the maximum errors in the measurements of mass and length are 3% and 2% respectively, then the maximum error in the measurement of density is
(a) 7%
(b) 5%
(c) 9%
(d) 3%
2. A physical quantity Q is found to depend on observables x, y and z, obeying relation $Q=\frac{x^{3} y^{2}}{z}$.

The percentage error in the measurements of x, y and z are $1 \%, 2 \%$ and 4% respectively. What is percentage error in the quantity Q ?
(a) 11%
(b) 4%
(c) 1%
(d) 3%
3. The side of a cubical block when measured with a vernier callipers is 2.50 cm . The vernier constant is 0.01 cm . The maximum possile error in the area of the side of hte block is
(a) $\pm 0.01 \mathrm{~cm}^{2}$
(b) $\pm 0.02 \mathrm{~cm}^{2}$
(c) $\pm 0.05 \mathrm{~cm}^{2}$
(d) $\pm 0.10 \mathrm{~cm}^{2}$
4. A physical quantity is given by $X=M^{a} L^{b} T^{c}$. The percentage error in measurement of M, L and T are α, β and γ respectively. Then, the maximum \% error in the quantity X is
(a) $a \alpha+b \beta+c \gamma$
(b) $\mathrm{a} \alpha+\mathrm{b} \beta-\mathrm{c} \gamma$
(c) $\frac{\mathrm{a}}{\alpha}+\frac{\mathrm{b}}{\beta}+\frac{\mathrm{c}}{\gamma}$
(d) None of these
5. A certain body weighs 22.42 g and has a measured volume of 4.7 cc . The possible error in the measurement of mass and volume are 0.01 g and 0.01 cc . Then maximum error in the density will be
(a) 22%
(b) 2%
(c) 0.2%
(d) 0.02%
6. Which of the following is the most precise device for measuring length?
(a) A vernier callipers with 20 divisions on the vernier scale coinciding with 19 main scale divisions
(b) A screw gauge of pitch 1 mm and 100 divisions on hte circular scale
(c) A spherometer of pitch 0.1 mm and 100 divisions on the circular scale
(d) An optical instrument that can measure length to within a wavelength of light
7. Percentage errors in the measurement of mass and speed are 2% and 3% respectively. The error in the estimation of kinetic energy obtained by measuring mass and speed will be
(a) 8%
(b) 2%
(c) 12%
(d) 10%
8. The least count of the metre rod is 0.1 cm . What is the permissible error in the length of the rod measured with it ?
(a) $\pm 0.2 \mathrm{~cm}$
(b) $\pm 0.1 \mathrm{~cm}$
(c) $\pm 0.05 \mathrm{~cm}$
(d) $\pm 0.01 \mathrm{~cm}$
9. In a side callipers, $(\mathrm{m}+1)$ number of vernier divisions is equal to m number of smallest main scale divisions. If d unit is the magnitude of the smallest main scale divisions, then the magnitude of the vernier constant is
(a) $\frac{\mathrm{d}}{(\mathrm{m}+1)}$ unit
(b) $\frac{\mathrm{d}}{\mathrm{m}}$ unit
(c) $\frac{\mathrm{md}}{(\mathrm{m}+1)}$ unit
(d) $\frac{(m+1) d}{m}$ unit
10. The temperatures of two bodies measured by a thermometer are $\mathrm{t}_{1}=20^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}$ and $\mathrm{t}_{2}=50^{\circ} \mathrm{C} \pm 0.5 \mathrm{C}$. The temperature difference and the error therein is
(a) $30{ }^{\circ} \mathrm{C} \pm 1{ }^{\circ} \mathrm{C}$
(b) $70{ }^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}$
(c) $30{ }^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}$
(d) $70{ }^{\circ} \mathrm{C} \pm 1{ }^{\circ} \mathrm{C}$

PHYSICS

CRASH COURSE
LECTURE - 03

TOPICS : Error Analysis (SOLUTION)

1.

$$
\begin{aligned}
& \text { (c) : } \because \rho=\frac{M}{L^{3}}, \\
\therefore \quad & \frac{\Delta \rho}{\rho}=\frac{\Delta M}{M}+3 \frac{\Delta L}{L}=3 \%+3(2 \%)=9 \% .
\end{aligned}
$$

2. 8. (a): $Q=\frac{x^{3} y^{2}}{z}$

The percentage error in the quantity Q is

$$
\frac{\Delta Q}{Q} \times 100=\left(3 \frac{\Delta x}{x}+2 \frac{\Delta y}{y}+\frac{\Delta z}{z}\right) \times 100
$$

$$
=3\left(\frac{\Delta x}{x} \times 100\right)+2\left(\frac{\Delta y}{y} \times 100\right)+\frac{\Delta z}{z} \times 100
$$

$$
=3 \times 1 \%+2 \times 2 \%+4 \%=11 \%
$$

3.

(c) : Here $l=2.50 \mathrm{~cm}$ and $\Delta l=0.01 \mathrm{~cm}$ Since $A=l^{2}=(2.50 \mathrm{~cm})^{2}$

$$
\begin{aligned}
& \therefore \quad \frac{\Delta A}{A}=2 \cdot \frac{\Delta l}{l} ; \frac{\Delta A}{A}=2 \times \frac{0.01 \mathrm{~cm}}{2.50 \mathrm{~cm}} \\
& \therefore \Delta A=\frac{2 \times 0.01 \mathrm{~cm}}{2.50 \mathrm{~cm}} \times(2.50 \mathrm{~cm})^{2} \\
& \quad=2 \times 0.01 \times 2.50 \mathrm{~cm}^{2}=0.01 \times 5 \mathrm{~cm}^{2} \\
& \text { or } \Delta A= \pm 0.05 \mathrm{~cm}^{2}
\end{aligned}
$$

4. (a) : $X=M^{a} L^{b} T^{c}$

Percentage error in X
$\frac{\Delta X}{X} \times 100=a \frac{\Delta M}{M} \times 100+b \frac{\Delta L}{L} \times 100+c \frac{\Delta T}{T} \times 100$ As given,
$\frac{\Delta M}{M} \times 100=\alpha, \frac{\Delta L}{L} \times 100=\beta, \frac{\Delta T}{T} \times 100=\gamma$
\therefore Percentage error in $X=a \alpha+b \beta+c \gamma$.
5.

$$
\begin{equation*}
\text { (b) : Density } \rho=\frac{\text { mass } m}{\text { volume } V} \tag{i}
\end{equation*}
$$

Take logarithm on the both sides of eqn. (i), we get $\ln \rho=\ln m-\ln V$
Differentiate eqn. (ii), on both sides, we get

$$
\frac{\Delta \rho}{\rho}=\frac{\Delta m}{m}-\frac{\Delta V}{V}
$$

Errors are always added for maximum error.
\therefore Maximum error in the density ρ will be
$=\left[\frac{\Delta m}{m}+\frac{\Delta V}{V}\right] \times 100 \%=\left[\frac{0.01}{22.42}+\frac{0.1}{4.7}\right] \times 100 \%=2 \%$
6. (d): The most precise device is one whose least count is the least.
(a) Least count of vernier callipers

$$
\begin{aligned}
& =1 \mathrm{MSD}-1 \mathrm{VSD}=1 \mathrm{MSD}-\frac{19}{20} \mathrm{MSD} \\
& =\frac{1}{20} \mathrm{MSD}=\frac{1}{20} \mathrm{~mm}=\frac{1}{200} \mathrm{~cm}=0.005 \mathrm{~cm}
\end{aligned}
$$

(b) Least count of screw gauge
$=\frac{\text { Pitch }}{\text { No.of divisions on circular scale }}$
7.

$$
\begin{aligned}
& \text { (a) : As } K=\frac{1}{2} m v^{2} \\
\therefore & \frac{\Delta K}{K} \times 100=\frac{\Delta m}{m} \times 100+\frac{2 \Delta v}{v} \times 100=2 \%+2 \times 3 \%=8 \%
\end{aligned}
$$

8. (b) : Permissible error $= \pm$ least count $= \pm 0.1 \mathrm{~cm}$
9. 32. (a) : $(m \mp 1)$ V.S.D $=m$ M.S.D.

1 V.S.D. $=\frac{m}{m+1}$ M.S.D.
Vernier constant $=1$ M.S.D. -1 V.S.D.
$=1$ M.S.D. $-\left(\frac{m}{m+1}\right)$ M.S.D.
$V_{1}=\frac{1}{(m+1)}$ M.S.D. $=\frac{d}{m+1}$ unit
10.
(a): Here, $t_{1}=20^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}$
$t_{2}=50^{\circ} \mathrm{C} \pm 0.5^{\circ} \mathrm{C}$
The temperature difference of two bodies is
$t=t_{2}-t_{1}=50^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}=30^{\circ} \mathrm{C}$
The error in temperature difference is given by $\Delta t=\left(\Delta t_{1}+\Delta t_{2}\right)$

$$
=\left(0.5^{\circ} \mathrm{C}+0.5^{\circ} \mathrm{C}\right)=1^{\circ} \mathrm{C}
$$

$\therefore \quad$ The temperature difference is $30^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$.

